Cells derived from porcine aorta tunica media show mesenchymal stromal-like cell properties in in vitro culture.
نویسندگان
چکیده
Several studies have already described the presence of specialized niches of precursor cells in vasculature wall, and it has been shown that these populations share several features with mesenchymal stromal cells (MSCs). Considering the relevance of MSCs in the cardiovascular physiopathology and regenerative medicine, and the usefulness of the pig animal model in this field, we reported a new method for MSC-like cell isolation from pig aorta. Filling the vessel with a collagenase solution for 40 min, all endothelial cells were detached and discarded and then collagenase treatment was repeated for 4 h to digest approximately one-third of the tunica media. The ability of our method to select a population of MSC-like cells from tunica media could be ascribed in part to the elimination of contaminant cells from the intimal layer and in part to the overnight culture in the high antibiotic/antimycotic condition and to the starvation step. Aortic-derived cells show an elongated, spindle shape, fibroblast-like morphology, as reported for MSCs, stain positively for CD44, CD56, CD90, and CD105; stain negatively for CD34 and CD45; and express CD73 mRNA. Moreover, these cells show the classical mesenchymal trilineage differentiation potential. Under our in vitro culture conditions, aortic-derived cells share some phenotypical features with pericytes and are able to take part in the formation of network-like structures if cocultured with human umbilical vein endothelial cells. In conclusion, our work reports a simple and highly suitable method for obtaining large numbers of precursor MSC-like cells derived from the porcine aortic wall.
منابع مشابه
CALL FOR PAPERS Stem Cell Physiology and Pathophysiology Cells derived from porcine aorta tunica media show mesenchymal stromal- like cell properties in in vitro culture
Andrea Zaniboni, Chiara Bernardini, Marco Alessandri, Chiara Mangano, Augusta Zannoni, Francesca Bianchi, Giuseppe Sarli, Laura Calzà, Maria Laura Bacci, and Monica Forni Department of Veterinary Medical Sciences–DIMEVET, University of Bologna, Bologna, Italy; Health Sciences and Technologies–Interdepartmental Center for Industrial Research, University of Bologna, Ozzano Emilia, Bologna, Italy;...
متن کاملTumor Associated Mesenchymal Stromal Cells Show Higher Immunosuppressive and Angiogenic Properties Compared to Adipose Derived MSCs
Background: Differentiation, migratory properties and availability of Mesenchymal Stromal Cells (MSC) have become an important part of biomedical research. However, the functional heterogeneity of cells derived from different tissues has hampered providing definitive phenotypic markers for these cells. Objective: To characterize and compare the phenotype and cytokines of adipose derived MSCs (...
متن کاملHuman Mesenchymal Stem Cells and Their, Clinical Aapplication
There are two main categories for stem cells a cording to their origin: Embryonic Stem Cells and Adult Stem Cell. Mesenchymal stem cell, supporting hematopoetic stem cells in bone marrow, can regenerate tissues such as bone, cartilage, muscle, tendon and fatty tissue. These cells were recognized for the first time by Friedenstein and Petrokova who could isolate theme from rat bone marrow.Mesenc...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملIsolation and culture of human endometrial derived cells as an in vitro model for future implantation studies
Introduction: Monthly regeneration of endometrium after cyclical mensturation confirmed the ability of specific population of the cells that presence in the basalis layer and undergone consecutive hormonal changes that could prepared the endometrial layer for probable implantation. These cells, known as, stem cell. The aim of this study was the isolation and culture of human endometrial derive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 306 4 شماره
صفحات -
تاریخ انتشار 2014